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Abstract

The structure of differential forms on the bundle of connections p : C(P) — M of a principal
SU(2)-bundle = : P — M which are invariant under the natural representation of the gauge
algebra of P on connections is determined. The invariance under the Lie algebra of all infinitesimal
automorphisms of P is also analyzed. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The main goal of this paper is to determine the structure of the algebra of gauge invariant
differential forms on the bundle of connections p : C(P) — M of aprincipal SU (2)-bundle
7 . P — M.Itisproved that this algebra is generated over p*§2°(M) by a closed 4-form 4
globally defined on C(P). The cohomology class of 14 in HYC(P); Ry = H*(M; R)isalso
proved to be —472 times the Chern class ¢>(P) of the given bundle, but we should mention
that 4 provides more information than the Chern class. For example, if dim M < 3, then
¢2(P) = 0 (in fact, P is trivial in this case) but the form n4 does not vanish on C(P). If
P is trivializable, C(P) can be identified to the s11(2)-valued covectors on M by using a
trivialization P = M x SU(2); i.e., C(P) = T*M ® s1u(2). The bundle T*"M ® s1(2)

* Corresponding author. Tel.: 4+34-91-561-88-06: fax: +-34-91- 411-76-51; e-mail: jaime @iec.csic.es
! E-mail: mcastri @sungt1.mat.ucm.es

0393-0440/99/$ — see front matter © 1999 Elsevier Science B.V. All rights reserved
PI1: S0393-0440(98)00065-5



314 M. Castrillon Lopez, J.M. Masqué / Journal of Geometry and Physics 30 (1999) 313-330

is endowed with a generalized Liouville form wys with values in s51(2). The relevant fact
is that the determinant (taken in the Lie algebra 5u(2)) of the 2-form dwy + om A oM
does not depend on the particular trivialization chosen. In this way we obtain a differential
form n4 defined on C(P) for an arbitrary SU (2)-bundle P, not necessarily trivial. In [9,10]
the bundle of connections of a U (1)-bundle has been endowed with a symplectic structure
which coincides with that of 7*M in the trivial case and it is proved that the algebra of
gauge invariant forms is generated by the corresponding symplectic form. From this point
of view, the results below can be considered as an extension from the group S' to §°.

The gauge algebra of P is defined to be the Lie algebra gauP of SU(2)-invariant n-
vertical vector fields of P. More generally, we think of the Lie algebra aut P of all SU (2)-
invariant vector fields of P as being the “infinitesimal automorphisms” of P. Hence, as the
automorphisms of P acts on connections, we obtain a natural Lie algebra representation
from aut P into the vector fields of C(P), which we denote by X +— X¢. Then, a differential
form £2, on C(P) is said to be aut P-invariant (resp. gauge invariant) if Lx 2, = 0, for
every X € autP (resp. forevery X € gauP). In order to state the basic results the technique
is first to solve the problem on J! P and then to go down onto the bundle of connections by
using the natural identification (/' P)/G = C(P). Moreover, gauge invariance on J'P is
of interest by itself as the differential forms invariant under the representation of gau P into
J! P are shown to be generated by the standard contact forms and their exterior differentials.

The present work was initially originated from the geometric version of Utiyama’s the-
orem ([3-5,7]) which classifies Lagrangian densities invariant under the gauge algebra
representation. Due to the importance of this result in describing the geometry of gauge
theories it seems reasonable to analyze it in full generality on a purely geometric setting.

2. Definitions and preliminaries
2.1. Automorphisms and the gauge group

An automorphism of a principal G-bundle 7 : P — M is an equivariant diffeomorphism
@ : P— P;ie., @ is adiffeomorphism such that & (u - g) = d(u) - g,Yu € P,Vg € G.
The set of all automorphisms of P is a group under the composition of maps which will be
denoted by AutP. An automorphism ¢ € AutP induces a unique diffeomorphism on the
base manifold ¢ : M — M, suchthat m 0 @ = ¢ o 7. If ¢ is the identity map, then @ is
said to be a gauge transformation or even a bundle automorphism (cf. [4, 3.2.1; 8, I1L.35;
14, 1.B]). The set of all gauge transformations is a subgroup Gau P C AutP, which is called
the gauge group of the given bundle. In the case of the trivial bundle pr; : M x G — M, it
is easily checked that every automorphism & can be written as

P(x,8)=(p(x), ¥(x)-8), xeM, geq, 2.1)

where ¢ : M — M is a diffeomorphism and ¢ : M — G is a differentiable map. In
particular, we have Gau(M x G) ~ C%®(M, G). Note however that this identification
depends on the specific trivialization chosen.
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2.2. G-invariant vector fields

A vector field X € X(P) is said to be G-invariant if R, - X = X, Vg € G, where R,
stands for the right translation by g. If &; is the flow of a vector field X € ¥(P), then X is
G-invariant if and only if @, € AutP,Vr € R. Because of this we think of G-invariant vector
fields as being the ‘Lie algebra’ of the automorphism group Aut P and hence we denote the
Lie subalgebra of G-invariant vector fields on P by autP C X(P). Each G-invariant vector
field on P is m-projectable. Similarly, a 7-vertical vector field X € X(P) is G-invariant if
and only if @, € GauP, vt € R. Accordingly, we denote by gauP C aut P the ideal of all
m-vertical G-invariant vector fields on P, which will be called the gauge algebra of P.

Moreover, the group G acts on 7 (P) by setting X - g = (R,)«(X), VX € T(P),Vg € G.
The quotient T(P)/G exists as a differentiable manifold and it is endowed with a vector
bundle structure over M (see [1]), whose global sections can be naturally identified to
autP;ie.,autP >~ I'(M. T(P)/G). The gauge algebra of P can be identified 1o the adjoint
bundle; i.e., the bundle associated to P by the adjoint representation of G on its Lie algebra g,
denoted by 7, : adP — M (cf. [8,1I1.35; 13, I. Proposition 5.4]); thatis,ad P = (P xq)/G.
where the action of G on P x g is given by

(u,A)-g=(u- g,Adgq(A)). Yue P, YAeg, VgegG.

Hence, gauP ~ I'(M, adP). Given a pair (u, A) € (P x g) we shall denote its G-orbit
in ad P by (u, A)). We also remark that the fibres (adP), are endowed with a Lie algebra
structure uniquely determined by the condition

[(u, A), (u, B)] = (u.[A.B]). Vuenx '(x).VA, Beq. (2.2

where [, ] stands for the bracket in g, but this is no longer true for the fibres of T(P)/G.
We obtain an exact sequence of vector bundles over M (the so-called Atiyah sequence,
[1, Theorem 1)),

0— adP > T(P)/G 5 TM — 0. (2.3)
2.3. The bundle of connections

Let I” be a connection on a principal G-bundle 7 : P — M and let X* € X(P) be the
horizontal lift (with respect to I™) of a vector field X € X(M) (cf.[13, ChapterII, Section 1]).
As is well-known (cf. [13, IL.Proposition 1.2]) the horizontal lift X* is a G-invariant vector
field on P projecting onto X. Hence we have a splitting of (2.3),

or:TM —> T(P)/G, or(X)=X" 24

Conversely, any splitting o : TM — T(P)/G of the Atiyah sequence (i.e., o is a vector
bundle homomorphism such that 7, o 0 = 174) is induced from a unique connection on
P in other words, there is a natural one-to-one correspondence between connections on
P and splittings of the Atiyah sequence. Accordingly, we define the bundle of connections
p : C(P) —> M as the sub-bundle of Hom(7M, T(P)/G) determined by all R-linear
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mappings A : TyM — (T (P)/G)y such that m, o X = 17, (e.g., see [5, Definition 4.5;
7; 10]). Connections on P can thus be identified to the global sections of p : C(P) - M.
We denote by

or: M — C(P) 2.5)

the section of the bundle of connections tautologically induced by a connection I". An
element A : T,M — (T(P)/G), of the bundle C(P) over a point x € M is nothing but
a ‘connection at a point x’; i.e., A induces a complementary subspace H), of the vertical
subspace V,(P) C T,(P) foreveryu € 7~ !(x). If we add a linear mapping h : T M —
(ad P), to A we obtain another element A’ = h + A € C(P), as h € ker . In this way we
can say that C(P) is an affine bundle modelled over the vector bundle Hom(7 M, ad P) =~
T*M ® adP.

2.4. SU(Q2) notations

Throughout this paper we consider the standard basis of the Lie algebra 311(2) normalized
by the factor 1/2 (e.g., see [2, I1.1, p.19; 15, 10.8-(10.94)]); i.e.,

L/1 0 1 0 1 1/0 i
nst(3 D) b0 meiC D) e

with i = +/—1. Remark that 2iB,, 1| < a < 3, are the Pauli matrices. From the formula
(2.6) we obtain

[Bi, B;] = B3, [B», B3]= By, [Bs, Bi]=Bs. 2.7

We identify SU(2) to the 3-sphere S° < C?, as follows. Let (y° + iy!, ¥2 + iy?) be the
standard coordinates in C2. Then, a matrix g € SU(2) can be uniquely written as

o= ( Y@y +iv'@ ¥ +iy3<g)> 28
- @) +iy’ @@ Y@ ~iy'(@ '
with
Y@+ ' (@) +y @) + ¥ )P = 1. (2.9)
2.5. Coordinates on C(P)

Letst : P — M be a principal SU(2)-bundle and let (U; xt x™) be a coordinate
opendomainin M suchthat P istrivial over U. Forevery B € 8u(2) we can thus define a one-
parameter group of gauge transformations over U by setting 92 (x, g) = (x, exp(tB) - g),
x € U. Let us denote by B the corresponding infinitesimal generator. Then B, B>, B3
are a basis of sections for adw ~!(U). As o is a section of 7, in (2.3) there exist unique
functions A;‘ (I"') € C°°(U) such that

9 J a ~ .
or (5;]‘)=37— j(F)Bav 1<j=<n (2.10)
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The functions (x/; Aj”.), 1 <j <n,1<a < 3,induce a coordinate system on p~'(U) =
C(x~'U). Note that dim C(P) = 4n, with n = dim M. Let A be the 3u(2)-valued 1-form
on p~1(U) given by

1 IAl A2+1A}
a
A=A B, = - 5 s .

where AY = A" dx/, 1 < a < 3. Then, for every connection I" on P the following local
expression of the connection form holds true [15, 7.10, formulas (7.93), (7.96) and (7.101)]:

wr =g 'dg+g”' - A - g, (2.12)
where A(I”) stands for o}.(A).

2.6. The fundamental representation

Each @ ¢ AutP acts on the connections of P as follows: given I, I'' = & (I') is the
connection corresponding to the connection form w = (@~ YY*wr (cf. [13, II.Proposition
6.2 (b)]). If ¥ € AutP is another automorphism, then (¥ o @)(I") = ¥ (P (I')). For each
@ € AutP there exists a unique diffeomorphism

@ C(P) — C(P) (2.13)

such that p o &¢ = ¢ o p, where ¢ : M — M is the diffeomorphism induced from
&, and P o oy = o), for every connection I" on P. In this way we obtain a group
homomorphism AutP — DiffC(P).If &, is the flow of a G-invariant vector field X € autP,
then (®,) is a one-parameter group in C(P) and the corresponding infinitesimal generator
will be denoted by X¢. In this way we obtain a Lie algebra representation

autP — X(C(P)), X Xc, (2.14)

which will be called the fundamental representation of infinitesimal automorphisms of P on
the bundle of connections. Notice that X and X ¢ both are projectable onto the same vector
field of M. By using a coordinate domain (U; x!, ..., x") in M and the basis By, B>, B:
of adr ™! (U) introduced in Section 2.5, is immediate that each X € autrr ! (U) can be
written as

0 N
X=fig7t8Ba fig € C™(), (2.15)
/3x.
and as a simple computation shows, we have
8 : 3fl 342,24 2) 3
Xe=fiz7—-3 A — g AT ) —, (2.16)
¢ fjaxf 133 <8xf taxd axJ Al+e BA}

where € stands for the cyclic sum. In particular, if X is an infinitesimal gauge transformation,
then f; = 0 and we obtain

1

dg d
Xe=—-3 =+ — A’ (2.17)
& f?,x(ax/ g 8 )3!1
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A differential form w, on C(P) of arbitrary degree 0 < r < 4n = dim C(P) is said to be
gau P-invariant (resp. aut P-invariant) if for every X € gauP (resp. for every X € autP)
we have Lx.w, = 0. Usually, gau P-invariant differential forms are called gauge invariant
forms. We denote by Zyay p (resp. by T,y p) the set of gau P-invariant differential forms (resp.
aut P-invariant differential forms). Notice that Zy,, p is a Z-graded algebra over £2°(M) and
Zauwp C Zgaup is a subalgebra.

3. Statement of the main results

First, let us consider the trivial bundle pr; : M x SU(2) — M. We can identify its
bundle of connections with 3u(2)-valued covectors, i.e., C(M x SUQ2)) >~ T*M ® 3u(2),
by means of the one-to-one correspondence I <> wr <> A(I') stated in the formula (2.12).
Moreover, the bundle T*M ® su(2) is endowed with a canonical 3u(2)-valued 1-form
wpy which generalizes the Liouville form on the cotangent bundle, defined by wy (X) =
w(p«X), where X is a tangent vector at w € T*M ® 3u(2). In terms of the coordinate
system (x/; A;‘), 1<j<n,1<a<3on p“l (U) introduced in ( 2.10) it is obvious that
the local expression of wyy is

wy = AYdx) @ B,. (3.1)

Note that wp is p-horizontal and that for every connection I" we (tautologically) have
ofwy = A(N) (cf. formula (2.11)). Let us see how wp changes in making a gauge
transformation @ of the trivial bundle. If @ (x, g) = (x, ¥ (x) - g), with ¥ : M — SU(2)
(cf. (2.1)), then from the formula (2.12) we obtain

wr =@ Yor=g"dg+g - (wdy T +y- AT ¥y g,
I = de().

Hence for every connection I”, we have

o (Diwy) =0t =AU ) =¢dy ™ + ¢ AT -y
=ofWdy T +y oy yh.
As wy is horizontal we conclude that @fwpy = ¥ dy~! + ¥ - wpy - ¥~ 1. Therefore,
Dl ([dwp + ou Aoy) =V - (doy + oy Awy) - ¥ (3.2)

Next, let us consider an arbitrary SU(2)-bundle v : P — M and let U be an open domain
in M over which P is trivial. Let us choose a trivialization ¥ : 7~ (U )y = U x SUQ).
We define a 4-form n4‘1’ on C(Gr ~Y(U)) as follows:

ny = ¥l(det(doy + wy Awy))  (cf. 2.13)),
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where det : 511(2) — R is the determinant function on the Lie algebra. We prove that there
exists a unique global 4-form 74 on C(P) such that

(7]4)],,——1U = tI/C*(det(da)U + wy A wy)). (3.3)
To do this, it suffices to check that if &’ : 7~ (U’) — U’ x SU(2) is another trivialization
on an overlapping domain U’ we have

) 1wy = W81 waun-
Infact, ® =¥ oW~ : UNU' x SUR) - UNU’ x SU(2) is a gauge transformation

and from formula (3.2) we obtain

(7]:{/)|,rl(Ume)
= (Pc o W) (det(dwy + wy A wy))
= Y (PS(det(dwy + wy A wp)))
= Y7 (det(Pr(dwy + oy A wy)))
= Y2 (det(doy + wy A wy))
= (nr)lp—'(unu’)-
By using formulas (2.11), (3.1) and (3.3) one obtains the local expression of 74 on an

induced coordinate system (x/; Af) (cf. Section 2.5),

s =4 3(dA! A dx' A dA] A dx/ + 24747 dx/ A dxF A dA A dXD). (34)
123

Also note that, as the above argument proves, for every ¢ € GauP we have
Di(ng) = n4, (3.5)

and therefore, n4 € Zgaup.

Theorem 3.1. Let 7 : P — M be a principal SU(2)-bundle. The algebra of gauge
invariant differential forms on the bundle of connections p : C(P) — M is generated over
the algebra of differential forms on M by the 4-form ny; i.e.,

Zoaup (C(P)) = (p*2°(M))[n4].

Theorem 3.2. Letw : P — M be aprincipal SU (2)-bundle. Assume M is connected. The
algebra of aut P-invariant differential forms on the bundle of connections p : C(P) - M
is generated over R by the 4-form ng; i.e.,

Zaup (C(P)) = Rlna].

As p : C(P) — M is an affine bundle, the projection p induces an isomorphism in the
cohomology algebra, p* : H*(M; R) = H*(C(P); R). Hence given a cohomology class
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[wi] € H (C(P); R), there exists a unique cohomology class [w;] € H'(M; R) such that
p*([w;i]) = [w;]. Then, we have

Theorem 3.3. Letw : P — M be an arbitrary principal SU (2)-bundle. The cohomology
class of ng in H*(C(P); R) coincides with —472 times p*(c2(P)), where c3(P) stands for
the second Chern class of P.

Remark 3.1. If dim M < 3, then every principal SU (2)-bundle m : P — M is trivial,
as SU(2) ~ 8% is (m — 1)-connected for each m < dim M and hence P admits a global
section (cf. [11, Chapter 2, Theorem 7.1]) but the form na does not vanish although its
pull-back along every connection does vanish.

4. Gauge invariance in J' P
4.1. The identification (J'P)/G =~ C(P)

Let 7 : P — M be an arbitrary principal G-bundle and let 77y : J'P — M be the 1-jet
bundle of local sections of 7. The group G acts (onthe rightyon J! P by jls.g = jxl (Rgo0s),
where s is a section of 7 defined on a neighbourhood of x € M, g € G and R, stands for
the right translation. The quotient (/' P)/G exists as a fibred differentiable manifold over
M and can be identified to the bundle of connections (see [6]). This fact is sometimes used
to define C(P); e.g., see [3,12] for this approach. Let us briefly describe this identification.
Letg : J'P — C(P) be the mapping defined as follows. Each local section s defines a
retract Iy(yy @ Too) P — Vi) P =Kker(my)s(x) of the inclusion Vi, P C Ty () P by setting
Iy(X) = X — sy (X). For every u € 7~ 1(x) there exists a unique g € G such that
u = s(x)-gand wedefine I, : T,P — V,Pas T, = (Rg)x oI5y o0 (Rg-1)x. In this
way, we obtain a ‘connection I” at x’; that is, an element of C(P) which only depends on
jis. Hence we set q(jls) = I'. It is not difficult to prove that g is a surjective submersion
whose fibres are the orbits of G. Accordingly, (J I P)/G can be identified to C(P).

4.2. Infinitesimal contact transformations

Let X be a 7 -projectable vector field on P, let X’ be its projection onto M and let @;, ¢;
be the flows of X, X', respectively. A flow can be defined on J! P by the formula

y,. .
@V (jls) = j, (@ os o).

If X is m-vertical (i.e., X’ = 0 or even ¢, = idys) then d’,(” = J1(®,). We denote by
XD the infinitesimal generator of the flow d’,(l) which is called the infinitesimal contact
transformation associated to X (or also the natural lift of X to the 1-jet bundle). We remark
that the mapping X + X! is a Lie algebra monomorphism and that XV is 7}-projectable
onto X, where 19 : J! P — P stands for the canonical projection.
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Proposition 4.1. For every & € AutP we have g o @'V = & o g (¢f. formula (2.13)).
Accordingly, for every X € autP the vector field X'V is g-projectable and its projection is
Xe (cf. formula (2.14)).

4.3. Contact forms on J' P

Letwr : P — Mbe aprincipalSU(Z) bundle. We define a $11(2)-valued 1-formé@ on J' P
as follows. For every Y € T1 (J P) we have q(]rs)((m())*Y) € VyyP. If B* € X(P)is
the fundamental vector ﬁeld assomated to B € 3u(2) (cf. [13, L.5]) we have an isomorphism
P x su(2) - VP givenby (u, B) — B,;. Consequently, there exists a unique B € su(2)
such that q(]\ $)((m9).Y) = B‘(r) Then, we set 8(Y) = B. Using the basis ( 2.6), we

obtain & = 6 ® B, where 6', 82, 6° are ordinary global 1-forms on J'P called the
standard contact forms.

Proposition 4.2. The valued 6 form enjoys the following properties:

(1) Forevery ® € GauP, we have J'(9)*0 = 6.

(2) Forevery B € 3u(2), let B® be the fundamental vector field associated to B under the
action of SU(2) on J' P. Then, Lg+6 = [0, B].

Proof. Forevery Y € Tj_‘;S(J] P) we have (J1(®)*0)(Y) = 0(J " (®),Y) and
(M) (J (@)Y = (mo 0 T (@)Y = (D omp)uY = Bu((m10)4T).

Hence 9(]' (®).Y) = C, where C € q is the element determined by
Dm0 Y — 5: (1005 Y] = Chy -

Let B € g be the vector defined by B* = (10)«Y — 74 (10)+ Y. Hence 8(Y) = B, and
we have Cq)(s oy = b B:‘m = B;‘)(& thus proving (1). In order to state (2), let us first
calculate J!(R;)*0 for g € G. We have

(1002 (R)LY — (Rg 0 8)uma(mi0)sd (R
= (Rg)*(ﬂl())*y - (Rg o s)*ﬂ*(Rg)*(T[IO)*Y
= (Rg)*[(ﬂl())*y - 5*77*(7710)*}]] = (Rg)*B:(V\-) = (Adgal B)*

Hence (J'(Rg)*G)(Y) = (Adg—l o 8)(Y). As the flow of B* is J'(Rexp(,g,), we can
conclude. O

4.4. Gauge formson J' P

A differential form w, on J! P is said to be gauge invariant if Ly nw, = O forall X €
gaupP.
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Remark 4.1. From Proposition 4.2 (1) it follows that the standard contact forms are gauge
invariant but, in fact, by using the formulas (2.16), (4.2) below and the standard formulas
for jet prolongation it is not difficult to prove that the form 0 is aut P-invariant indeed.

Theorem 4.3. The algebra of gauge invariant formson J ' P is generated over m [2°(M) by
the forms (69, d8%),1 <a < 3.

Proof. For every open subset U € M we set A'(U) = n;2°(U)[9¢, do“]. Let A(U) be
the algebra of gauge invariant forms on J I(z~'U). From Remark 4.1, we have A'(U) C
A(U). As A’ and A are sheaves of algebras over M, it will suffice to prove that A'(U) =
A(U) for every small enough open subset. Hence we can assume that P is trivial, P =
M x SU(2). In this case, we can identify J' P to the submanifold of J!(M x C?) given by
the equations

3 3
YN =1, Y Yy=0 d<js<n, @.1)
i =0 i=0

as follows taking derivatives in (2.9), where (x/, y; y}), 0<i<31<j<n,is
the coordinate system induced from (x/, y’) on J'(M x C?); ie., y}': Gls) = B0 o
$)/8x7)(x).

Let w, be a gauge invariant form on J 'P and let sg : M — P be the unit section:
so(x) = (x, 1), Vx € M. We claim that

’ 7 .
(w,)jgs() € Aj}m’ Vxe M = (“’r)j}s € .ij,s, for every local section s of P.

In fact, let @ be the gauge transformation given by @ (x, g) = (x, ¥ (x)g), where s(x) =
(x, ¥(x)). We have & o 59 = s, and since SU (2) is connected, there exists a one parameter
group of gauge transformations ¢, such that ¢; = &. Let X be the infinitesimal generator
of &;. As Lymw, = 0, we have J!(®,)*w, = w,, V¢ € R; in particular for t = 1.
Then,

(@)1 =" @D (@)1
and it suffices to take into account that

JHeTYy A, =4, .
( ) A.’r] S0 A],rls
Accordingly, we only need to prove that every gauge invariant form w, belongs to .4’ along
the section j'so. Moreover, as a simple computation shows, the standard contact forms have
the following local expression

0_ 04
5! e B dyl - y.il dx
02 | =2] =52 —y3 0 dy” —y; dx/ 42)
PE SV R SN dy? — yj2 dx’

dy3 — y7 dx’
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Set
(' =d0' 4602 A0%, (P=do?+0° A6l = dod +0' AB2. (4.3)
Evaluating on the unit section we obtain

(9“)’1\“ = 2(dyu)/lvo' Y, = Z(dxl AN qu) ! l <a=<3. (4.4)

Jxso Jiso®

As (04, d6“) and (8“, ¢“) span the same algebra, it will suffice to prove that (wr); Iy, can
be written as a polynomlal in (6, ¢9) with coefficients in 2°(M).

ASVO(] so) =1,y (]rso) =0,1 <i <3,x € M, the functions (x/, yi')'j) 1 <j<n,
1 < i < 3, constitute a coordinate system on a neighbourhood N of the submanifold { ;! Js0
xeM)cJ' (M x SUQ) c J! (M x C?). Hence any differential r-form defined on N
can be uniquely written as

o = > furskr dx™ Ay A dy?)2 A dyh? A dy])?
[H|+[/+[J[+K [+ L|=r

A Ay AYDR A A @y Ay A A dyD)

where fyijkr € CO(N), dxf = ()M Ao A A H = (B, ... b)), T =
(i1, 12,i3),J = Utseoosdn), K = (klv-~-~kn)aL = ..., l,,),With‘Hl =hi+--+hy,,
I} =iy + iz + 13, etc., and all indices hq, iy, i, i3, ju. ko, ly, 1 < a < n, belong to {0, 1};
i.e., they are Boolean indices. Let us fix a point x) € M. Set x/ (x) = x(J), 1 < j <n.letus
consider the vectorﬁeldXin (2.15) givenby: f; =0,1 < j <n, gl = (x« —x())2 o being
a fixed index, and g2 = g* = 0. The infinitesimal contact transformation (cf. Section 4.2)
associated to X in J'(M x C?) is given by

1 ag! 9 ag! 3
XV =x 4 - [[—y' =2 — gl ) = 022 4 01 2
+2(< Yaxs Y8 ayQ+ Yy T8 ay!

ag! 9 ag! d
_y3% 31 296 21y %)
+( Y ox T8 ) ay? +(’ oxi V8 )53

Note that X' is tangent to J'(M x SU(2)) and its restriction X" to this submanifold

is the infinitesimal contact transformation associated to X in J'(M x SU(2)). From the
definition of X, for every f € C*®°(N) we obtain X' f( j'\!()so) = (. Furthermore, from
Proposition 4.2 (1) and (4.2), we have

(Lg0%)

J S0

= 2Lz dy")jll_()m =0, l<a<3
and from a simple computation,

(L)‘((l) dy]l )A/,‘!OS() = 5;-1 (dxa)}"‘oso; (L)‘{(l, dyj{‘)jl,mso =0, a=273.
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Hence, taking into account that w, is gauge invariant,

0= Lz g =

3 furskrdx® Ay A dyH? A dyH)"
Ja=1
/\(dyll)Jl Ao A (dyol(_l)jafl A dx® A (dy(’x+l)ja+1 Ao A (dyiz)j,,

A YDA A Ay A D) A A dy)"
Jlg%0
Therefore, we obtain (hy = 0, jo = 1) = fHIJKL(leOSO) = 0. As « and x are arbitrary,

we can conclude that f; k1 © j's0 = 0 whenever an index « exists such that j, = 1 and
he, = 0. Hence, along the unit section, the form w, can be rewritten as

@)=Y {Furskrdxe® Ady)' A dyH? A dyH?
ho+ja<2
Adx" A dyD) A A (dx A dylyl
A@YDH A A @YD A @Y A A ) g
Moreover, let us consider the vector field X € gauP given as follows: g' = 2(x! —

x(l))(x" — xg .2<a <n, g2 = g3 = 0. Its infinitesimal contact transformation, restricted
to N, verifies

XD f(jgs0) =0, Vf € CON): (LgndyDy =0, 1<a<3;
(L;((nd){,-l)j(loso =57 dx! +5jl dx*;  (Lgu dy;»l)jr\l_()s() =0,2<a<3.

Evaluating the Lie derivative of w, at j_:oso, we obtain

0= Y {Fuykrdx AWdsyH)" A dyH? A dyH?
ha+ja<2~jl=l
Ax" A dx¥) A A (dx® A dy))n
AAYDR A A dyDE A @YD A A dy
+ > Fuukcde Ayh" A @D A @y
ha+ju <2‘ja:l
Adx! A dyDIt A A dx®T A dyl et A dx® A dx'

/\(dxa+l A dy(l+l)ja+l A A (dx" A dy,i)j”

AAYDR A Ay A dyD A A dy)

Jggs0
The above equation implies Fy;sk1. = Fy;jg . whenever ji = Jus Ju = J1 and
Js = Jjs» 8 # 1, a. Moving the indices 1 and «, and the point x;, we can ensure that if a

term w,_2 A dx/ A dy jl appears in the expression of w;, it comes from the bigger summand
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wr_2 A (dx! A dy‘l + -4+ dx" A dy,l) = w;_2 A {;. Substituting the indices 2 and 3
succesively for the index 1 in the definition of X € gauP, we can similarly conclude that
w, can be written as

(@ )I\l s0

(3 furskrdx A @'Y A @D A G A Y A A
N Jodo

thus finishing the proof. O

Corollary 4.4. Assume M is connected. The algebra of aut P-invariant forms on J' P is
generated over R by the forms (69, d60%), 1 <a < 3.

Proof. This follows from Theorem 4.3 taking into account Remark 4.1. O

5. Proof of Theorem 3.1

We first remark that a differential form w, on C(P) is gauge invariant if and only if ¢* w,
is gauge invariant on J! P with respect to the action of gauP in J! P (see Proposition 4.1)
and that the differential forms in g*Zgup (C(P)) can be identified to the differential forms
£, on J' P which are gauge invariant and such that

(1) ipe 2, =0; (i) Lpe2, =0, VB € 5u(2),

as conditions (i) and (ii) are equivalent to saying that §2, is g-projectable onto the bundle
of connections.

Let £2, be a gauge invariant form on /' P. According to Theorem 4.3, £2, can be written
as

2, =Y w0 AN AGH AEHT A CHT A DA EH, (5.D

i

where i = (i, i2,i3) € {0, 1}, @ = (a, a2, @3) € N, the forms 6%, ¢¢ are defined in
Section 4.3 and in the formula (4.3) respectively, and w; ,, is a differential form on p*2°*(M)
of degree r — (iy + i> +i3) — 2(xx] + a2 + «3). Note that ¢ can be substituted for d9“ as
(89, d6“) and (69, {%) span the same algebra. By imposing the condition (i) above in (5.1)
and taking into account that 8“(B;) = &, (or equivalenty, (B*®) = B), and i B;(” =0, as
follows from the very definition of ¢ and the formula in Proposition 4.2 (2), we have

0=ip2, =Y Sloriminae A O AE) ACHT AEH? AEHS
i2.63,x
= > o e AEYTAEDTACHT AEH A
irda.

+ Y iy AN A ACHT A EDH A CHT

[ RN
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Hence w; o = 0 for every i # (0, 0, 0), and consequently,

2, =3 @ AEHT AEHAEH, (5.2)

Let us now impose the condition (ii) above in (5.2). First, as a simple computation shows,
we have
Lpst' =0, Lpeg> =0 Lpet’ =07,
Lpst' == Lpt>=0, Lo’ =¢/,
Lpst' =¢%  Lpg?=—¢', Lpst’ =0,
Hence,
0=Lp: 82,
=Y we AT A @D AEHOT — )T AEHNT), (53)
o

and similarly for B> and Bs. Let us assume the following.

Lemma 5.1. The algebra generated by ¢!, ¢2, ¢* over p*Q2*(M) is the quotient of the
polynomial algebra p*2°(M)[11, 12, 13] modulo the ideal generated by the elements of the
form w,tf"'tg'zt;m, r+my+my+my>n=dmM, o, € p*2"(M).

Then, the proof of the theorem can be concluded as follows. The coefficient of the term
EHTAEHAE)?, deg wo+01+02+03 < n,informula(5.3)is (62+1)wo, 05+ 1051 —
(03 + D)@y, 05—1.03+1, Which must vanish by virtue of the lemma. Proceeding similarly with
the other two cases, we obtain

(02 + l)w(7|.02+1,03—1 = (03 + 1)w01,02—1.63+] ’ (54)
(01 + Do, +1,00.01-1 = (03 + Do —1.09.03+1, (5.9
(01 + Dos +1.03-1,07 = (02 + D®g,_1.09+41,05- (5.6)

Letting o1 = 0in (5.6), we deduce w1 5,1 o, = 0. Byrecurrence on o) in (5.6), we conclude
that ws, 0,0, = 0if o7 is an odd integer. Using (5.4) and (5.5) in the same way, we have
Way,a,0, = 01f any index o; is odd. Seto; = 28; and gg = @g, p,.p, = W28,.28,.28; = Wa-
Then

2, =) op A EHHP A A (EHHP,
B
and formulas (5.4), (5.5) and (5.6) become

B20p, .f2.8:-1 = B39 .pr—1 pss (5.7
B30 —1.82.8: = B198 2. p3~1> (5.8)
B1og,.g—1.8s = B0 ~1.5, ps- (5.9)
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By induction on f; and using the formula (5.9), it is easily checked that

(B1 + B2)!
PBIpr0 = o 2.0.00 B+ P2 =n,
Bi-ba AT EAGRE B+ 8
and then, by induction on f3 and again using formulas (5.7), (5.8) and (5.9), we finally

obtain

(B1 + B2+ B3)!
BB 1By e 00
Accordingly, from Leibniz’s formula we have

Q=) e AEHT ACHAEH

PBi.B2 By =

= Y s A @O AR A EHHP
2B1+P2+Pa)<r
Ur/2] "

=Y Y oo AP AW A HHP
(20 prfor s P1P2PY
1r/2]

=Y @00 AEHT @D+ @HHE
k=0

Hence we only need to prove the following identity:

@+ @+ @ =4@g ). (5.10)

To do this, we first remark that the problem being local, we can assume the bundle is trivial
P = M x SU(2). Moreover, as both sides of (5.10) are gauge invariant forms, behaving as
in the begining of the proof of Theorem 4.3, it suffices to prove that the formula (5.10) holds
true along the 1-jet of the unit section so = (1, 1). First, let us calculate the equations of
the quotient map ¢ : J' P — C(P) in terms of the natural coordinate systems (x/, v': _\'}),
0 <i<3,1<j<n(with the constrains (4.1)); (x/; A;’), l<j<nl<a<3in
J'p.C (P), respectively. Let ' =q o j Is be the connection attached to a local section .
By imposing that I” vanishes on its own horizontal lift given by formula (2.10) we obtain
the expression of A".’ (I") in terms of the jet coordinates; that is,

1 2 2 3 3 !
4 5 (ODTHONT w2yt Ny

2 2.3 -

Al == | 0 4 oNZHan? =iy
2 2 2 2 .

A VAV S 3002 3004323 (02 4 ()2 ¥

(5.11)

over the open subset y¥ £ 0, which contains the graph {j)so|x € M} of the unit section.

Moreover, restricting g*n4 to j'so, from the formulas (3.4) and (5.11) we have
Ja S0

(@ 1415, = $(@% 3 (dA] A dx' A dA] A dx)))),
x 123 :

- %(q*g}(dA} A dxj)z)/_\!fn'
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As (dAD) 1, = —2(dy?

Jx S0
conclude.

)j‘lm, 1 <a<3,1<j < n,from the second formula in (4.4) we

Proof of Lemma 5.1. We first remark that {“ is gauge invariant as follows from its very
definition in formula (4.3) and (1) in Proposition 4.2. We have a natural epimorphism of
graded algebras,

E:p M, 31— pr2* g, 2, %, EGy =¢“ 1<a <3.

We claim that ker E is generated by the elements in the statement. First, we prove that
w5213 € ker E forr +mi 4+ ma + m3 > n = dim M. To do this, behaving as in the
proof of Theorem 4.3, we only need to prove that w, A (£ A (£%)™ A (£3)™ vanishes
along the submanifold {jx'so | x € M} C J'P forr + my +my +m3 > n, where sg is the
unit section of the trivial bundle. This directly follows from the expression of £¢ along j'so
in the formula (4.4).

Conversely, if

Z Ormt] "5, wpm € pFRTM), T +mi+ma+m3<n
r4+2(my+ma+mz)=R

lies in ker E, then we have

0= Yo @ AT A AEH™),, (5.12)

S0’
r42(my+my+m3)=R

and again using the expression of ¢ in the formula (4.4) we conlude that all (w; ), must
vanish. In fact, if (w, )y # O for some indices r,m = (m|, m2, m3), then there exist
indices kj,..., k2 € {0,1} such that k) + --- + k&, = m; + my +m3 < n —r, and
(@rm)x A (X)X Ao A (dexy)* = Adex) A -+ A diex,, with A # 0. In this case, in
the right hand side of the formula (5.12) a term exists of the form

N(@rm)e A dx! A dyDM A @dx! A dy?)t A dx! A dyD)t A
A" A dyDyt A (dx™ A dy2) A (dx" A dyd)r,

withd' £ 0, hy+i1+j1 = ki, ..o by i+ jn =k b1+ +hy = my i1+ +ip = ma,
Jj1 + -+ ju = m3. This term cannot cancel with any other term in (5.12) as once the
indices hy, i1, ji, ..., hn, ip, jn have been fixed, there is no other term containing

@D A @A@Y A Ay A @y A (dy)
as a factor, thus leading us to a contradiction. O

Remark 5.1. As 6 is aut P-invariant (see Remark 4.1), taking into account Proposition
4.1, from the formula (5.10) and the very definition of the forms {9 (see (4.3)), we conclude
that n4 is also aut P-invariant.
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6. Proof of Theorems 3.2 and 3.3
6.1. Proof of Theorem 3.2
We first state the following:

Lemma 6.1. Let 2, = p*w, + p*w, 4 Ans+ -+ pro,_gy A nﬁ be a form of degree r
in Ty p(CP), with w,_4s € QUYM),0<s <k=1[r/4l.If2, =0, then w,_y, =0
for every s such thatr — 25 < n.

Proof. Remark that if r — 25 > n, using formula (5.10) and Lemma 5.1, we have
G (Proras AT = (P T ora AEHT + DT+ (DD =0
which implies p*w, _4; A 13 = 0. Hence the term w, _4, A 1} does not appear in £2,. Now,
assuming §2, = 0 and pulling it back via ¢, we obtain
0=¢*2, =nfo + Jmfwr_s A+ (2 +HH +- -
H o A DY+ @D+ EHDE

Again, by applying Lemma 5.1, we deduce 7§ w, 4, = 0, thus concluding the lemma. O

Let £2, be an aut P-invariant r-form on C(P). In particular, £2, is gau P-invariant and by
virtue of Theorem 3.1, §2, can be written as

2, =ptw, +prwr_a AN+ -+ pro_g A nﬁ, wy € 2°(M).

Consider a trivialization P|y = U x SU(2) on a coordinate domain (U: x', .. ... x") and
let X € autw ~'(U) be the vector field given by formula (2.15) with g = 0 and arbitrary
fi € C*(U). Then, as 14 is an aut P-invariant form (see Remark 5.1), we have

0=Lx.2, =p*Lyw,+ p*Lywr—s Ans+- -+ p*Lyw_u A 775-

where X' = f;(3/ dx1) is the p-projection of X onto U. Taking into account Lemma 6.1,
this implies that VX € X(U), Lxw,—4; = 0if r — 45 + 25 < n, and a form verifies this
condition if and only if either it is a constant function in the case of 0-forms, or it identically
vanishes in higher order degrees. Hence 2, = 0 for r # 4k, and £2, = anﬁ, a € R, for
r = 4k, thus proving the theorem.

6.2. Proof of Theorem 3.3

First we remark that 74 is a closed form as follows from the formula (3.4) by a direct
computation or else differentiating in (5.10) and taking into account that from the formula
(4.3) we obtain

3
YA drt = 28" A doP A0 — d6' A doP A6 =0.
123

a=1
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Moreover, as p* : H 4M;R) > H*C(P);R) is an isomorphism, for every connection
I' on P and every closed 4-form £24 on C(P) we have p*[0[-§24] = [§24]. In particular
p*lofns] = [ns]. Then, pulling the formula (3.4) back via o, according to (2.11) we
obtain o1y = det(dA(I") + A(I") A A(I")), and pulling this equation back to the principal
bundle P via w we have

7*(ofng) = det(dn*A(N) + n*A(M) Ar*A(N)) = det(2r),

where £2r is the curvature form of I". We can thus finish by simply applying the definition
of the Chern classes given in [13, XII.3].
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