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Abstrac t  

The structure of differential forms on the bundle of connections p : C(P) --+ M of a principal 
SU(2)-bundle rr : P --+ M which are invariant under the natural representation of the gauge 
algebra of P on connections is determined. The invariance under the Lie algebra of all infinitesimal 
automorphisms of P is also analyzed. © 1999 Elsevier Science B.V. All rights reserved. 
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1. I n t r o d u c t i o n  

The main goal of this paper is to determine the structure of the algebra of gauge invariant 

differential forms on the bundle of connections p : C(P)  ~ M of aprincipal SU(2)-bundle 

7r : P ~ M. It is proved that this algebra is generated over p* f2*(M)  by a closed 4-form 04 

globally defined on C(P).  The cohomology class of 04 in H4(C(P);  ~)  -~ H4(M; ~) is also 

proved to be -47r  2 times the Cheru class c2 (P)  of the given bundle, but we should mention 

that 04 provides more information than the Chern class. For example, if dim M < 3, then 

c2(P) = 0 (in fact, P is trivial in this case) but the form 74 does not vanish on C(P).  If 

P is trivializable, C(P)  can be identified to the ,~lff2)-valued covectors on M by using a 

trivialization P ~ M × SU(2);  i.e., C(P)  -~ T * M  ® ~u(2). The bundle T * M  ® ~ll(2) 
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is endowed with a generalized Liouville form WM with values in ~u(2). The relevant fact 

is that the determinant (taken in the Lie algebra ~u(2)) of  the 2-form dwM + tOM A WM 

does not depend on the particular trivialization chosen. In this way we obtain a differential 

form r/4 defined on C(P) for an arbitrary SU(2)-bundle P,  not necessarily trivial. In [9,10] 

the bundle of  connections of  a U (1)-bundle has been endowed with a symplectic structure 

which coincides with that of  T*M in the trivial case and it is proved that the algebra of  

gauge invariant forms is generated by the corresponding symplectic form. From this point 

of  view, the results below can be considered as an extension from the group S 1 to S 3. 

The gauge algebra of  P is defined to be the Lie algebra gauP of  SU(2)-invariant rr- 

vertical vector fields of  P.  More generally, we think of the Lie algebra autP of  all SU(2)-  

invariant vector fields of  P as being the "infinitesimal automorphisms" of  P. Hence, as the 

automorphisms of  P acts on connections, we obtain a natural Lie algebra representation 

from autP into the vector fields of  C(P),  which we denote by X ~ Xc. Then, a differential 

form I2, on C(P) is said to be autP-invariant (resp. gauge invariant) if L x c ~ r  = 0, for 

every X e antP (resp. for every X ~ gauP).  In order to state the basic results the technique 

is first to solve the problem on J 1 p and then to go down onto the bundle of connections by 

using the natural identification (J  1 p )  / G ~ C (P).  Moreover, gauge invariance on J l p is 

of  interest by itself as the differential forms invariant under the representation of gauP into 

j I p are shown to be generated by the standard contact forms and their exterior differentials. 

The present work was initially originated from the geometric version of  Utiyama's the- 

orem ([3-5,7]) which classifies Lagrangian densities invariant under the gauge algebra 

representation. Due to the importance of this result in describing the geometry of gauge 

theories it seems reasonable to analyze it in full generality on a purely geometric setting. 

2. Definitions and preliminaries 

2.1. Automorphisms and the gauge group 

An automorphism of a principal G-bundle zr : P ~ M is an equivariant diffeomorphism 

: P ~ P;  i.e., q~ is a diffeomorphism such that q~(u • g) = ~ ( u )  • g, Yu E P,  Yg e G. 

The set of  all automorphisms of  P is a group under the composition of  maps which will be 

denoted by AutP .  An automorphism ~ e Au tP  induces a unique diffeomorphism on the 

base manifold 4~ : M ~ M, such that 7r o ~ = ~b o zr. If  ~b is the identity map, then • is 
said to be a gauge transformation or even a bundle automorphism (cf. [4, 3.2.1; 8, 111.35; 

14, I.B]). The set of  all gauge transformations is a subgroup GauP C AutP ,  which is called 

the gauge group of  the given bundle. In the case of  the trivial bundle pr I : M x G ~ M, it 
is easily checked that every automorphism • can be written as 

• ( x , g ) = ( ~ ( x ) , ~ ( x ) . g ) ,  x ~ M ,  g ~ G ,  (2.1) 

where ~b : M ---> M is a diffeomorphism and 7t : M -~ G is a differentiable map. In 
particular, we have Gau(M × G) ~_ CC~(M, G). Note however that this identification 
depends on the specific trivialization chosen. 
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2.2. G-invariant vector fields 

315 

A vector field X 6 Y(P)  is said to be G-invariant if R~ • X -- X, ¥g 6 G, where R~, 
stands for the right translation by g. If 4~t is the flow of  a vector field X E Y(P) ,  then X is 

G-invariant if and only if ~t  E Aut P, `ct E E. Because of  this we think of  G-invariant vector 

fields as being the 'Lie algebra' of the automorphism group Au tP  and hence we denote the 

Lie subalgebra of  G-invariant vector fields on P by autP C 3i(P). Each G-invariant vector 

field on P is zr-projectable. Similarly, a n-vertical vector field X ~ Y ( P )  is G-invariant if 

and only if 4~t 6 GauP,  Vt E ~. Accordingly, we denote by gauP  C autP the ideal of  all 

n-vertical G-invariant vector fields on P,  which will be called the gauge algebra of P. 

Moreover, the group G acts on T ( P )  by setting X -g ----- (R~) , (X) ,  VX E T ( P ) ,  Vg ~ G. 

The quotient T ( P ) / G  exists as a differentiable manifold and it is endowed with a vector 

bundle structure over M (see [1]), whose global sections can be naturally identified to 

autP;  i.e., autP - N ( M ,  T ( P ) / G ) .  The gauge algebra of  P can be identified to the adjoint 

bundle; i.e., the bundle associated to P by the adjoint representation of G on its Lie algebra !~, 

denoted by 7r~ : adP  --+ M (cf. [8, III.35; 13, I. Proposition 5.4]); that is, adP  = (P  x !~)/G, 

where the action of G on P x g is given by 

( u , A ) . g = ( u . g ,  Adg-~(A)) ,  Vu E P, 'CA E~.1, "Cg E G. 

Hence, gauP ~_ F ( M ,  adP).  Given a pair (u, A) 6 (P  x g) we shall denote its G-orbit 

in adP by ((u, A)). We also remark that the fibres (adP)r  are endowed with a Lie algebra 

structure uniquely determined by the condition 

[((u, A)), ((u, B))] = ((u, [A, B])), 'Cu Err  - I  (x). "CA, B ~ t,~, (2.2) 

where [, ] stands for the bracket in g, but this is no longer true for the fibres of  T ( P ) / G .  

We obtain an exact sequence of  vector bundles over M (the so-called Atiyah sequence, 

[ 1, Theorem 1 ]), 

0 ~ adP ~ T ( P ) / G  ~*~ T M  --+ O. (2.3) 

2.3. The bundle o f  connections 

Let F be a connection on a principal G-bundle zr : P ~ M and let X* E Y ( P )  be the 

horizontal lift (with respect to F )  of  a vector field X E 3i (M) (cf. [ 13, Chapter II, Section 1 ]). 

As is well-known (cf. [13, II.Proposition 1.2]) the horizontal lift X* is a G-invariant vector 

field on P projecting onto X. Hence we have a splitting of  (2.3), 

a r  : T M  ~ T ( P ) / G ,  a r ( X )  = X*. (2.4) 

Conversely, any splitting cr : T M  --~ T ( P ) / G  of the Atiyah sequence (i.e., a is a vector 

bundle homomorphism such that yr, o a ---- 1TM) is induced from a unique connection on 
P;  in other words, there is a natural one-to-one correspondence between connections on 

P and splittings of the Atiyah sequence. Accordingly, we define the bundle of  connections 
p : C(P)  ~ M as the sub-bundle of  H o m ( T M ,  T ( P ) / G )  determined by all R-linear 
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mappings )~ : TxM ~ (T(P) /G)x  such that Jr, o )~ = lr~M (e.g., see [5, Definition 4.5; 

7; 10]). Connections on P can thus be identified to the global sections of p : C(P) ~ M. 
We denote by 

err : M ~ C(P) (2.5) 

the section of  the bundle of  connections tautologically induced by a connection F .  An 

element )~ : TxM ~ (T(P) /G)x  of the bundle C(P) over a point x 6 M is nothing but 

a 'connection at a point x ' ;  i.e., )~ induces a complementary subspace H,  of  the vertical 

subspace Vu(P) C T , (P) for  every u ~ J r - l (x) .  If  we add a linear mapping h:T~M--~  
(adP)x to )~ we obtain another element U = h + ~ ~ C(P), as h 6 ker Jr,. In this way we 

can say that C(P) is an affine bundle modelled over the vector bundle Hom(TM,  adP)  

T* M ® adP.  

2.4. SU(2) notations 

Throughout this paper we consider the standard basis of  the Lie algebra ~u (2) normalized 

by the factor 1/2 (e.g., see [2, II.1, p.19; 15, 10.8-(10.94)]); i.e., 

1(0 1 0 B2 = 1 0 B3 = (2 .6)  
Bt = ~ - i  ' 2 - 1  ' 2 i " 

with i = ~/-Z-i. Remark that 2iBa, 1 _< a _< 3, are the Pauli matrices. From the formula 

(2.6) we obtain 

[BI, B2] = B3, [B2, B3] = B1, [B3, BI] = B2. (2.7) 

We identify SU(2) to the 3-sphere S 3 C C 2 , as follows. Let (yO + iyl ,  y2 + iy3) be the 

standard coordinates in C 2. Then, a matrix g ~ SU(2) can be uniquely written as 

yO(g) +iy l (g )  y2(g) + i y 3 ( g )  
g =  _y2(g )+iy3(g  ) yO(g )_ i y l (g ) .  ] (2.8) 

with 

y0(g)2 + yl(g)2 + y2(g)2 + y3(g)2 = 1. (2.9) 

2.5. Coordinates on C(P) 

Let Jr : P --+ M be a principal SU(2)-bundle and let (U; x I . . . . .  x n) be a coordinate 

open domain in M such that P is trivial over U. For every B e 6n(2) we can thus define a one- 
parameter group of  gauge transformations over U by setting ~0ff (x, g) = (x, exp(tB) - g), 

x ~ U. Let us denote b y / }  the corresponding infinitesimal generator. Then/} l ,  /}2, /}3 
are a basis of  sections for adJr -1 (U). As a r  is a section of  Jr, in (2.3) there exist unique 
functions A](F)  E C~c(U) such that 

, o O" F = ~X j ' __ _ 
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The functions (x J; A~), 1 < j < n, 1 < a < 3, induce a coordinate system on p - l ( U )  -- 

C(yr - I  U). Note that dim C(P)  = 4n, with n = dim M. Let A be the ~u(2)-valued 1-form 

on p-1 (U) given by 

1 (  iA I A 2 + i A  3 ) 
A = A a ® B a = ~  _A2 + i A  3 _ iAi  , (2.11) 

where A" = A" dxJ, 1 < a < 3. Then, for every connection F on P the following local 
. ]  - -  - -  

expression of  the connection form holds true [ 15, 7.10, formulas (7.93), (7.96) and (7.101 )]: 

cot = g- l  dg + g-I  . A (F)  • g, (2.12) 

where A(F)  stands for a~(A).  

2.6. The fundamental representation 

Each • ~ A u t P  acts on the connections of  P as follows: given F ,  F '  = ~ ( F )  is the 

connection corresponding to the connection form OOr, = ( ~ - l ) * W F  (cf. [13, II.Proposition 

6.2 (b)]). If  q/ E Au tP  is another automorphism, then (if' o ~P)(F) = ko(~(F)) .  For each 

E Au tP  there exists a unique diffeomorphism 

~P¢ : C ( P )  -~ C(P) (2.13) 

such that p o qb c = ~b o p, where 4> : M ~ M is the diffeomorphism induced from 

~P, and ~ c  o a r  = a~<r), for every connection F on P. In this way we obtain a group 

homomorphism Aut P ~ DiffC(P).  If ~t  is the flow ofa  G-invariant vector field X E aut P, 

then (4>f)c is a one-parameter group in C (P)  and the corresponding infinitesimal generator 

will be denoted by Xc. In this way we obtain a Lie algebra representation 

autP --~ Y(C(P)),  X ~ Xc, (2.14) 

which will be called the fundamental representation of infinitesimal automorphisms of  P on 

the bundle of  connections. Notice that X and Xc both are projectable onto the same vector 

field of  M. By using a coordinate domain (U; x 1 . . . . .  x n) in M and the basis/~1,/ t2,/)3 

of  adrc - j  (U) introduced in Section 2.5, is immediate that each X E autrr - I  (U) can be 

written as 

3 ga , a C ~ X : ~ 0 - ~ j  + /la f j , g  E (U), (2.15) 

and as a simple computation shows, we have 

(03' O at 32 0 
- g" A j  , (2.16) Xc : f j  ~xJ ~ + + - g2a 

123 \3---~ 3XJ 3A) 

where ® stands for the cyclic sum. In particular, if X is an infinitesimal gauge transformation, 

then f j  : 0 and we obtain 

Xc : - ~ ( 3g' + g3A 2 _ g2A3] 3 
t23 \~ x J  / 3A)" (2.17) 
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A differential form (.Or on C(P) of arbitrary degree 0 < r < 4n = d imC(P)  is said to be 

gauP-invariant (resp. autP-invariant) if for every X e gauP (resp. for every X 6 autP) 

we have Lxcwr  ---- 0. Usually, gauP-invariant differential forms are called gauge invariant 

forms. We denote by Zgaue (resp. by ZautP) the set of  gauP-invariant differential forms (resp. 

autP-invariant differential forms). Notice that ZgauP is a Y-graded algebra over ~2 ° (M) and 

~autP C ~gauP is a subalgebra. 

3. Statement of the main results 

First, let us consider the trivial bundle pr 1 : M x SU(2) ~ M. We can identify its 

bundle of connections with 6n(2)-valued covectors, i.e., C(M x SU(2))  _~ T *M  ® 6u(2), 

by means of  the one-to-one correspondence F ~ cot ~ A (F)  stated in the formula (2.12). 

Moreover, the bundle T*M ® ~n(2) is endowed with a canonical 6n(2)-valued l-form 

OM which generalizes the Liouville form on the cotangent bundle, defined by WM (X) = 

w ( p . X ) ,  where X is a tangent vector at w e T*M ® ~u(2). In terms of  the coordinate 

system (x j" A~), 1 _< j < n, 1 < a < 3, on p - I  (U) introduced in (2.10) it is obvious that 

the local expression of  O2M is 

a d x  j ® Ba .  (3.1) CO M = A j  

Note that WM is p-horizontal and that for every connection F we (tautologically) have 

~r~.O)M = A ( F )  (cf. formula (2.11)). Let us see how WM changes in making a gauge 

transformation q~ of  the trivial bundle. If  ~ ( x ,  g) = (x, W(x) • g), with W : M -+ SU(2) 

(cf. (2.1)), then from the formula (2.12) we obtain 

wr,  = (~/ ' - l )*wr = g-1 dg + g - I  . (W dW -1 + W " A ( F )  • W - I )  • g, 

F'  = ~ c ( F ) .  

Hence for every connection F ,  we have 

$ $ $ 
O'F(CI)cOM) A(F ' )  W d W - I + w  A ( F )  W -1 = GF,(.O M = = . . 

= ~ ( W d ~ P  -1 + W .~o~ . W-J) .  

As Wg is horizontal we conclude that ~ W M  = W dW -1 + W " WM • W - j  • Therefore, 

qb~ (do9 M q- 09 M A O)M) : W " (dO)M -~- O)M A O)M) • W - I  . (3.2) 

Next, let us consider an arbitrary S U (2)-bundle zr : P ---> M and let U be an open domain 
in M over which P is trivial. Let us choose a trivialization q~ : ~r-~(U) ~ U × SU(2). 
We define a 4-form ~ '  on C(7r - l  (U)) as follows: 

04 ~ = qJ3(det(dcov + wu A coy)) (cf. (2.13)), 
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where det • ~u(2) ---> ~ is the determinant function on the Lie algebra. We prove that there 

exists a unique global 4-form T]4 on C ( P )  SUCh that 

(04)]p-I  U = tP~(det(dwu + wu m wu)) .  (3.3) 

To do this, it suffices to check that if tp' : rr-1 (U')  ---> U'  x SU(2) is another trivialization 

on an overlapping domain U'  we have 

(04~)l~,-,~unu,~ = (o~')lp-,wnu'~. 

In fact, 49 = O'  o 0 -I  : U A U' x SU(2) -+ U C3 U' x SU(2) is a gauge transformation 

and from formula (3.2) we obtain 

(rj~") I~, '(unu'l 
= ( ¢ c  o qJc)*(det(dwv + wu A w v ) )  

= qJ~ (chc(det(dwu + w u / x  ¢ou))) 

= O ~ ( d e t ( ~ ( d w u  + cou/x wLI))) 

= tP~(det(dwu + w u / x  cou)) 

= (o4~)lp_,(wu,~. 

By using formulas (2.11), (3.1) and (3.3) one obtains the local expression of  04 on an 

induced coordinate system (x J; A j )  (cf. Section 2.5), 

//4 = ll-~3(dA] A dx i A dA) /x dx j + 2A2A 3 dx j A dx k A dA] A dxi). (3.4) 

Also note that, as the above argument proves, for every • 6 GauP  we have 

(ib~(r]4) = r/4 , (3.5) 

and  therefore, 04 E ~gauP. 

Theorem 3.1. Let Jr • P ---> M be a principal SU(2)-bundle. The algebra of  gauge 

invariant differential forms on the bundle o f  connections p : C( P) ~ M is generated over 

the algebra o f  differential forms on M by the 4-form 04; i.e., 

~Z'gauP(C(P)) = (p*S'2"(M))[r /4] .  

Theorem 3.2. Let Jr • P --+ M be a principal SU  (2)-bundle. Assume M is connected. The 

algebra o f  autP-invariant differential forms on the bundle o f  connections p : C( P) ---> M 

is generated over ~ by the 4-form 04; i.e., 

~autP ( C ( P ) )  -~- R[r/4]. 

As p : C(P)  --> M is an affine bundle, the projection p induces an isomorphism in the 

cohomology algebra, p* : H°(M;  •) ~ H ' ( C ( P ) ;  R). Hence given a cohomology class 
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[co/] E H i (C(P);  ~) ,  there exists a unique cohomology class [wi] 6 H i (M; ~)  such that 

p*([wi]) : [co/]. Then, we have 

Theorem 3.3. Let Jr : P ~ M be an arbitrary principal SU (2)-bundle. The cohomology 

class o f  rl4 in H4(C( P); R) coincides with -4z r  2 times p*(c2(P)) ,  where c2(P)  stands for  

the second Chern class o f  P. 

Remark 3.1. I f  dim M < 3, then every principal SU (2)-bundle 7r : P ---> M is trivial, 

as SU(2)  -~ S 3 is (m - 1)-connected for  each m < dim M and hence P admits a global 

section (cf [11, Chapter 2, Theorem 7.1]) but the form 04 does not vanish although its 

pull-back along every connection does vanish. 

4. Gauge invariance in J 1 p 

4.1. The identification ( j 1 P ) / G  ~- C(P)  

Let rr : P ~ M be an arbitrary principal G-bundle and let zri : j I p  _+ M be the 1-jet 

bundle of  local sections of  zr. The group G acts (on the right) on j l p by j~ s .g  = j~ (Rg o s), 

where s is a section of  zr defined on a neighbourhood of  x 6 M, g E G and Rg stands for 

the right translation. The quotient ( j l  p ) / G  exists as a fibred differentiable manifold over 

M and can be identified to the bundle of  connections (see [6]). This fact is sometimes used 

to define C(P) ;  e.g., see [3,12] for this approach. Let us briefly describe this identification. 

Let q : j1  p ~ C(P)  be the mapping defined as follows. Each local section s defines a 

retract Fs<x) : Ts<x) P ~ E~.<x) P = ker(zr,)s<x) of  the inclusion V~x) P C T~(x) P by setting 

Fs(~I(X) = X - s , rr , (X) .  For every u E r r - J ( x )  there exists a unique g ~ G such that 

u = s(x)  . g and we define F, : T , P  --+ VuP as Fu = (Rg) ,  o E~<x) o (Rg 1),. In this 

way, we obtain a 'connection F at x ' ;  that is, an element of  C(P)  which only depends on 

j~s. Hence we set q( j~s )  = F.  It is not difficult to prove that q is a surjective submersion 

whose fibres are the orbits of  G. Accordingly,  ( J I P ) / G  can be identified to C(P).  

4.2. Infinitesimal contact transformations 

Let X be a Jr-projectable vector field on P ,  let X'  be its projection onto M and let q~t, ~bt 

be the flows of  X, X' ,  respectively. A flow can be defined on J l p by the formula 

= j4~t<xl(~t o s o (a-t). 

If  X is r -ve r t i ca l  (i.e., X'  = 0 or even opt = idM) then ~ l )  = j l ( ~ t ) "  We denote by 

X <l) the infinitesimal generator of  the flow q~l) which is called the infinitesimal contact 

transformation associated to X (or also the natural lift of X to the 1-jet bundle). We remark 

that the mapping X ~ X (1) is a Lie algebra monomorphism and that X <t) is :rl0-projectable 

onto X, where rcl0 : j l  p __+ p stands for the canonical projection. 
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P r o p o s i t i o n  4.1. For every 4~ E A u t P  we have q o cb ~j) = ~c  o q (cf formula (2.13)). 

Accordingly, for  every X E a u t P  the vector field X ~l) is q-projectable and its projection is 

Xc (cf formula (2.14)). 

4.3. Contact forms on j I  p 

Let 7r : P ~ M be a principal  SU(2) -bund le .  We define a ~n(2)-valued 1-form 0 on J I p 

as follows. For every Y ~ Tj~s(J 1 P) we have q ( j ) s ) ( ( z q o ) , Y )  ~ V~c~)P. If B* E Y ( P )  is 

the fundamenta l  vector field associated to B E ~n(2) (cf. [ 13, 1.5]) we have an isomorphism 

P × ~n(2) ~ V P  given by (u, B) w-~ B*. Consequent ly,  there exists a unique  B E ~u(2) 

such that q( j~s) ( (rrm) ,Y)  = B* Then,  we set O(Y) = B. Using the basis (2 .6 ) ,  we . s(x)" 
obtain 0 = 0" ® Ba, where 0 I, 02, 03 are ordinary global l - forms on j I p  called the 

standard contact  forms. 

P r o p o s i t i o n  4.2. The valued 0 form enjoys the following properties: 
(1) Forever..' • E G a u P ,  wehave  J l ( ~ ) * 0  ----- 0. 

(2) For every B E ~u(2), let B ° be the fundamental vector field associated to B under the 
action of  SU(2)  on j l  p. Then, LBoO : [0, B], 

Proof .  For every Y E Tj~s(J1 P) we have (j1 (q~)*0)(Y) = O ( J  I (4~),Y) and 

(7rm) , (J l (qb)) ,Y  = (:rio o j I  ( q ) ) ) , y  = (4) o : r lo ) ,Y = ~ , ( ( 7 r m ) , Y ) .  

Hence  O(J I ( ~ ) , Y )  = C, where C E ~q is the e lement  de termined by 

q~,[(zrm), Y s , r r , (y rm) ,Y]  * _ = Cq~¢s(x)). 

Let B E g be the vector defined by B* = (yrl0),Y - s, rr,(yrm),Y. Hence O(Y) = B, and s(x) 
we have C*~(sc,)) ---- clg, B~..t. J = B,t,c~ix) ) , *  thus proving (1). In order to state (2), let us first 

calculate j I  (R~)*0 for g 6 G. We have 

(7rlo),Jt ( Rx) ,  Y - -  ( R g  o s) ,rr ,(zrlo) ,Jl  ( R O ,  Y 

= (Rg) , (yr l0) ,Y - (Rg o s ) , z r , (Rg) , ( rqo) ,Y  

= (Re),[(zrlo) ,Y - s ,yr , (zr l0) ,Y]  = (Rg),Bs(~.) = (Ade-~ B)*. 

Hence  ( j I (Re)*O)(Y)  = (Adg ~ o O)(Y). As the flow of B ° is Jl(RexpitBi), we can 

conclude.  [] 

4.4. Gauge forms on j I  p 

A differential form Wr on j l  p is said to be gauge invariant if Lx,i)w,. = 0 for all X E 

gauP .  
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Remark 4.1. From Proposition 4.2 (1) it follows that the standard contact forms are gauge 
invariant but, in fact, by using the formulas (2.16), (4.2) below and the standard formulas 
for jet  prolongation it is not difficult to prove that the form 0 is autP-invariant indeed. 

Theorem 4.3. The algebra of gauge invariant forms on J I p is generated over Jr ~ $2 ° ( M ) by 
the forms (0 a, dO a) , 1 < a < 3. 

Proof. For every open subset U _ M we set .A'(U) = zr~I2"(U)[O a, dOa]. Let .A(U) be 

the algebra of  gauge invariant forms on J l ( ~ -  1U). From Remark 4.1, we have .A'(U) _ 

A(U) .  As .4' and ..4 are sheaves of  algebras over M, it will suffice to prove that ¢4'(U) = 

.4(U) for every small enough open subset. Hence we can assume that P is trivial, P = 
M x SU(2). In this case, we can identify j I  p to the submanifold of  j l  (M X C 2) given by 

the equations 

3 3 
E ( y i )  2 =  1, E yiy~ = 0  (1 < j 5 n ) ,  (4.1) 

i=0 i=0 

as follows taking derivatives in (2.9), where (x J, yi; yj), 0 < i <_ 3, 1 <_ j <_ n, is 

the coordinate system induced from (xJ, yi) on j l ( M  x C2); i.e., i .l y)(jx s) = (O(y i o 

s)/~xJ)(x). 
Let tot be a gauge invariant form on j 1 p  and let so • M --+ P be the unit section: 

so(x) = (x, 1), Yx 6 M. We claim that 

(O)r)j~s 0 E ,A~.~s0, V x  E m ,~ (¢-Or)j~s C. ~j~s' for every local section s of  P. 

In fact, let q~ be the gauge transformation given by ~ ( x ,  g) = (x, ~t(x)g), where s(x) = 
(x, 7t (x)). We have qo o so = s, and since SU(2) is connected, there exists a one parameter 

group of  gauge transformations ¢'t such that qOl = ~ .  Let X be the infinitesimal generator 

of  q0t. As Lx~J~Wr = 0, we have Jl(c1)t)*o) r -~- O)r, ¥t ~ ~; in particular for t = 1. 
Then, 

1 - - 1  * 
(O)r)j.~s = J (tlb ) ((Ogr)jlxso) , 

and it suffices to take into account that 

6 j I ( q~ - 1 )* Aj.~ so ~-~ .~ s" 

Accordingly, we only need to prove that every gauge invariant form ogr belongs to ~4' along 

the section j I so. Moreover, as a simple computation shows, the standard contact forms have 
the following local expression 

/ /y 0 2 ---~ 2 _ y 2  

0 3 _ y 3  

_ y 3  y0 yl  dy l  Y) d x j  

y2 _ y l  yO dy2 y2dx  j • 
dy 3 4 3 dx j 

(4.2) 
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~.1 = dOt ÷O2 A03,  ~.2=  dO2 ÷O3 AO 1, ~3 = d03 ÷OI AO 2. (4.3) 

Evaluating on the unit section we obtain 

0"" 2 ~' • a ).i~,,, = (dy).j)so" (~)j~so ~-" 2(dxJ A dy}')i~so, 1 < a < 3. (4.4) 

As (0", dO") and (0", ~") span the same algebra, it will suffice to prove that (o9,-)/),~ can 
be written as a polynomial  in (0", ~") with coefficients in I2" (M) .  

As v0(j~s0) 1 i -1 . . = , y ( j r s o ) = O ,  1 < i < 3 , x ~ M , t h e f u n c t i o n s ( x J ,  y i ; y i j ) , l < j < n ,  

1 < i < 3, constitute a coordinate system on a neighbourhood N of  the submanifold {j~ so 

Ix ~ M} C J l ( M  x SU(2) )  C j I ( M  x C2). Hence any differential r - fo rm defined on N 
can be uniquely written as 

Or = ~ fHIJK£ dx H A (dy l )  h A (dy2) i2 A (dy3) i~ A (dyl )J '  

IHI+III+IJI+IKI+ILI=r 

.-- ~ /~  A . . .  A (dy),)J,, A (dy2)  k l / , . . .  A (dy,~) k" A (dy3)  ~' A - . .  A ray; , )  . 

where fHIJKL E C~C(N), dx H = (dxl)  hi A . . .  A (dx")  h'', H = (hi . . . . .  h,,), I = 

(il, i2, i?), J = (jl . . . . .  jn) , K  = (kl . . . . .  k, ,) ,L = (ll . . . . .  ln), with lHI ---- h l + ' " + h , , ,  

Ill = il ÷ i2 ÷ i3, etc., and all indices ha,  il,  i2, i3, j~, k~, l , ,  1 < ~ < n, belong to {0, 1 }; 
i.e., they are Boolean indices. Let us fix a point xo ~ M. Set xJ (xo) = x~), 1 < j < n. Let us 

c¢ 2 consider the vector field X in (2.15) given by: f j  = 0, 1 < j < n, g l = (x . _ x0 ) , ~ being 

a fixed index, and g2 _- g3 = 0. The infinitesimal contact  transformation (cf. Section 4.2) 
associated to X in j I  (M x C 2) is given by 

I ((__ylOg' y) gl) 0 { oOg . y O g l ~  0 
X " ' = X + ~  ~xJ ~y() + ~ Y ~xj  + .i ] Oy) 

( y3OMI --y3gl) ~ ~(ig ) ~ • 

Note that X (l) is tangent to j l (M x S U(2)) and its restriction )~d) to this submanifold 

is the infinitesimal contact  transformation associated to X in j l  (M x SU(2)) .  From the 

definition of  X, for every f 6 C~C(N) we obtain )~l l)f(j~oso ) = 0. Furthermore, f rom 
Proposit ion 4.2 (1) and (4.2), we have 

L- a ( X(IIO )J~oS 0 -~" 2 ( L 2 m  dya) i  = O, 1 < a < 3, ar[) S 

and f rom a simple computation,  

J ax l  (Lid,, dy)).j~oso =- 6j (dx~l),oso; (L2~I, ayj )j,,so =- O, a -= 2, 3. 
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H e n c e ,  taking into account  that o) r is gauge invariant, 

0 = (L~(t~o),.)J~os 0 = ( Z fHIJKL dx H A (dy l )  il A (dy2) i2 A (dy3) i3 
\ j~=l 

A(dyl)J~ A ' ' "  A (dy~_l)J~ ' A dx '~ A (dYe+l) j"+l A . - .  A (dy)7) j" 

--- 2-kn ) m ( d y 2 )  k' A . . . A t a y n )  m(dy~)  II m . . . A ( d y 3 )  1" . 

J)o'° 

Therefore,  we obta in ( h .  = O, j~ = l )  =~ f H  1 J K L ( j /o  SO) = O. As  o~ and xo are arbitrary, 

w e  can c o n c l u d e  that f H  1J/~L o j I so = 0 w h e n e v e r  an index  ~ exists such that j~ = 1 and 
ha = 0. H e n c e ,  along the unit  sect ion,  the form Or can be rewritten as 

(°)r)jh, o = Z {FHIJKL dx H A (dy l )  q m (dy2) i2 A (dy3) i3 
ha+ja<2 

A(dx I A dyl) j' A . . .  A (dx n A dy,l,) j" 
3 In A(dy~) k' A . . .  A (dYl) k" A (dye)  11 A . ' - A  (dy , )  }j',o. 

Moreover ,  let us consider  the vector  field X ~ g a u P  given as follows: gl = 2(x j _ 
x l ) (x  a - x~) ,  2 < ~ < n, g2 = g3 = 0. Its infinitesimal contact  transformation,  restricted 

to N,  verifies 

20) f ( j~oso)  = 0, V f  ~ C ~ ( N ) ;  (L2(,, dya)jlxoso = 0, 1 < a < 3; 

(L2mdy])J~oso = ~7 dx I + ~) dx~; (L2m dyf)J~os ° = O, 2 < a < 3. 

Evaluating the Lie derivative of  Or at j.~oso, w e  obtain 

0 = Z ~ FHIJKL dx H A (dsyl) il A (dy2) i2 A (dy3) i3 

1¢ 

ha +Ja <2,jj = 1 I 
A(dx I A dx ~) A . . .  A (dx n A dy~l) j" 

A(dy2)  k~ A . . .  A (dYl2) k" A (dye)  l~ A . . .  A (dy3) t'' 

q- Z FHIJKL dx H A (dy l )  h A (dy2) i2 A (dy3) i3 

ha+ja <2,jcr =1 

A(dx I A dye) jl A . . .  A (dx u - l  A d y l _ l )  j~q A (dx ~ A dx 1) 

A(dx u+l A dy~+l)J"+J A . . .  A (dx" A d y l )  j" 
"1 

A(dYl2) k' A . . .  A (dy( )  k" A (dye)  h A . . .  A (dy3)/" ] o 

/ J~0so 

The above equation implies FHHKL = FHI]K L, whenever  j j  = jc~, ja  = j l  and 
js = ~,, s ~ l ,  a .  Moving  the indices 1 and a ,  and the point  x0,  w e  can ensure that i f  a 

term ~Or-2 A dx j A dy) appears in the expression of  mr, it comes f rom the bigger  summand 
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co,._2 A (dx i A dy I + . . .  + dx" A dye) = cot-2 A ~'l. Substituting the indices 2 and 3 

succesively for the index 1 in the definition of  X 6 gauP,  we can similarly conclude that 
w,. can be written as 

(mr)j~.,.() = 

(~ fHIJKLdX H A (0 l )  i1 A (02) ̀ 2 A (03) i '  A (~1)./ A (¢2)k A (¢3) l )  , 

thus finishing the proof• [] 

Corollary 4.4. Assume M is connected. The algebra o f  autP-invariant forms on j 1 p  is 

generated over ~ by the forms (0 a, dOa), 1 < a < 3. 

Proof. This follows from Theorem 4.3 taking into account Remark 4.1. [] 

5. Proof of Theorem 3.1 

We first remark that a differential form Or on C(P)  is gauge invariant if and only if q* co,. 

is gauge invariant on j l  p with respect to the action of  gauP  in j t  p (see Proposition 4.1) 

and that the differential forms in q*ZgauP (C(P))  can be identified to the differential forms 

£2r on J 1 p which are gauge invariant and such that 

(i) iB°£2r = 0; (ii) LB'£2r = O, VB ¢ _~lt(2), 

as conditions (i) and (ii) are equivalent to saying that £2r is q-projectable onto the bundle 

of connections. 

Let £2r be a gauge invariant form on J J P. According to Theorem 4.3, £2,. can be written 

as 

£2,. = Z(.Oi.0` A (01) il A (02) i2 A (03) i3 A (~1)0`1 A (~2)0`2 A (ff3)0`~ (5.1) 

i,0` 

where i = (il, i2, i3) 6 {0, 1} 3, ot = (oq, ~2, oe3) ~ N 3, the forms 0", if" are defined in 

Section 4.3 and in the formula (4.3) respectively, and o9i.0  ̀is a differential form on p* £2 ° (M) 

of degree r - (il + i2 + i3) - 2(Otl + or2 + or3). Note that ¢" can be substituted for dO a as 

(0", dO") and (0 a , ca) span the same algebra. By imposing the condition (i) above in (5.1) 

and taking into account that 0" (B~) = 6"t, (or equivalenty, O(B °) = B), and i8,~ ("  = 0, as 

follows from the very definition of  ¢" and the formula in Proposition 4.2 (2), we have 

0 = ~eT, S2r = ~ h (02)i~ 1),,~ • ~1col,i2,i3,0` A - A (03) i3 A (¢ A (¢2)0`2 A (~3)0`~ 

i2,i3,0` 

-- 2 t7 ~2coi1,1,i3.0  ̀A (01) tl A (03) i3 A (¢l)0`1 A (¢2)0'2 A (~.:i)0`~ 
il ,i3,0` 

+ y - :  h ~3coil,i2.l.c~ A (01) '1 A (02) i: A (¢1)0`1 A (~2)0`2 A (~3)0`a. 

it ,i2.0` 
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Hence 0Ji,~ = 0 for every i ~ (0, 0, 0), and consequently, 

~Qr = Z o J o t  A (ff l)  °el /X (ff2)cQ A (if3) °~3. (5.2) 

Let us now impose the condition (ii) above in (5.2). First, as a simple computation shows, 

we have 

LB~ 1 = O, LB[~2 = ~3, LB~3 = ~2, 

LB~I _~3,  LB~2 O, LB~3 ~1, 

LB~ 2 --~ , LB~ 3 O. LB~I ~2, I 

Hence, 

0 = L B ~ r  

= Z 0 J  u /k (ff l)  ~1 /X (O12(ff2) °~2-1 /~ (~3) ~3+1 --Ot3(ff2) °~2+1 A (~3)~3-1) ,  

c/ 

and similarly for B2 and B3. Let us assume the following. 

(5.3) 

L e m m a  5.1. The algebra generated by ¢l,  if2, ~-3 over p*12°(M) is the quotient of the 
polynomial algebra p'I-2 ° (M)[tl ,  t2, t3] modulo the ideal generated by the elements of the 
form mrtl I tm2 tm3 "2 "3 , r + m l  q - m 2  q - m 3  > n = dimM,  0J r E p * ~ Q r ( M ) .  

Then, the proof of  the theorem can be concluded as follows. The coefficient of  the term 

(~ I)~ A(~.2)~2 A(~3)~3,deg 0j~+0-1 +0-2+0-3 _< n, in formula (5.3) is (0-2+ 1)0ja~ ,~2+1.~3-1 -- 

(0"3 + 1)w~t.~2_ 1,o3 + I, which must vanish by virtue of  the lemma. Proceeding similarly with 
the other two cases, we obtain 

(0"2 -'}- l)0jcq,.2+l,cr3-1 = (0"3 -~- 1)0jo~,~2-1,~3+J, (5.4) 

(0"1 -'[- 1)0jcrl+l.o-2,o3-1 = (0"3 Jr- 1)O&rl-l,c%o'3+l, (5.5) 

(0"1 -'[- l)0jCrl+l,cr2-l,cr 3 = (0"2 q- 1)0jcr,-l,cr2+l,cr 3. (5.6) 

Letting 0"1 = 0 in (5.6), we deduce 0j1 .,,2-1.~3 = 0. By recurrence on 0"1 in (5.6), we conclude 

that coo, .~2,~3 = 0 if 0"1 is an odd integer. Using (5.4) and (5.5) in the same way, we have 

O)0~ I ,Ot2,O, 3 = 0 if any index ot i is odd. Set ot i ~--- 2fli and ~0~ = ~0/3~ .f12,f13 = 0jZflt .2f12.Zf13 = 0j~- 
Then 

~f2r = Z q g f l  A ((ffl)2)fll  A ((~2)2)fl2 A ((ff3)2)f13, 

and formulas (5.4), (5.5) and (5.6) become 

f12~Ofll ,f12,[33--1 = fl3qgfll ,fl2--1.fl3 , 

~3~0/41 -- l , f12 , f13 = fl l (Pill , f12 , f13 --1, 

fll ~fll ,,62--1,fi3 = fl2~Ofll --I,f12.f13" 

(5.7) 

(5.8) 

(5.9) 
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By induction on/31 and using the formula (5.9), it is easily checked that 

(ill -k f12)! 
~0131 "f12'O -- fll !f12! ~0fl1+/32'0'(}' /31 Jr" /32 ~ n, 

and then, by induction on/33 and again using formulas (5.7), (5.8) and (5.9), we finally 
obtain 

(ill "{- /32 "J- /33)[ 
~0fll ,fi2,f13 = 31 !32 !/33 [ ~0th +t~2 +~3,0,0. 

Accordingly, from Leibniz's formula we have 

S2r = )--~0~ A ((1)~, A (¢2),*2 A (¢3),,~ 
o~ 

= Z ~Ofl A ((¢1)2)/41 A ((¢2)2)/32 A ((¢3)2)/';3 

2(3i +32+/33 )<_r 
lr/2] 

k~ 
E 

k=0/3~ +/32+33=k 
It/2] 

= Z ~Ok'O'O A (((1)2 -'k (¢2)2 jr_ (¢3)2)k. 

k=0 

Hence we only need to prove the following identity: 

~k.o.oA((¢l)2) fl' A ((¢2)2)fl2 A ((¢3)2)fi3 

(¢1)2 q_ (¢2)2 ..{_ (¢3)2 = 4(q*r]4). (5.10) 

To do this, we first remark that the problem being local, we can assume the bundle is trivial 
P = M x SU(2). Moreover, as both sides of (5.10) are gauge invariant forms, behaving as 
in the begining of the proof of Theorem 4.3, it suffices to prove that the formula (5.10) holds 
true along the 1-jet of the unit section so = (1M, 1). First, let us calculate the equations of 
the quotient map q : j Ip  ...+ C(P) in terms of the natural coordinate systems (x j, yi. 311 ), 

0 _< i < 3 , 1 _< j <_ n (with the constrains (4.1)); (x J; A]), 1 < j < n, 1 < a _< 3, in 

j l  p ,  C(P) ,  respectively. Let F = q o j l s  be the connection attached to a local section s. 
By imposing that F vanishes on its own horizontal lift given by formula (2.10) we obtain 
the expression of A~ (F)  in terms of the jet coordinates: that is, 

A ! ] { (yO)2 + (yl)2 
2 [ yOy3 A~ =--~'6 + yly2 

~ A ) /  ~ \ y l y 3  yOy2 

yl y2 _ yOy3 

(yO)2 q_ (3,2)2 

yOyl + 3,2},3 

yly3 ,oy2) 
3,23,3_y0y~ 31 ? , 
(y0)2 4_ (3,3)2 y.)? 

(5.1 1) 

over the open subset yO 5~ O, which contains the graph {j~ sod E M} of the unit section. 
Moreover, restricting q* 04 to j 1 so, from the formulas (3.4) and (5.11) we have 

= ~(q ~ A A dxJ))j~s, ' ( q * o 4 ) j ~ o  ~ * i d a ]  dx i d a )  /, 
" " 1 2 3  

1 * ( d A )  j 2 ~(q ~ A = d x  ) )i~,'o' 
123 
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As (dAj)j.~so - 2 ( d y ~ ) j ~ .  o, 1 < a < 3, 1 < j < n, f rom the second formula  in (4.4) we 

conclude.  

Proof of L e m m a  5.1. We first remark that ((1 is gauge invariant  as follows from its very 

defini t ion in formula  (4.3) and (1) in Proposi t ion 4.2. We have a natural  ep imorphism of  

graded algebras, 

E : p*I2"(M)[t  l, t 2, t 3] --+ p * g 2 " ( M ) [ (  1 , (2,  (31, E(t  a) = (a, 1 < a < 3. 

We cla im that ker E is generated by the e lements  in the statement. First, we prove that 
_ml ~m2 ~m3 

O)r t  1 t 2 t 3 " E ker E for r + m l + m2 4- m3 > n = d im M. To do this, behaving as in the 

proof  of  Theorem 4.3, we only  need to prove that O)r A ( ( l ) m i A ( (2)  m 2 A ( ( 3 ) m 3 vanishes 

a long the submani fo ld  {jlxso I x ~ M} C j I p  for r + ml  + m2 + m3 > n, where so is the 

uni t  section of  the trivial bundle.  This directly follows f rom the expression of  ( "  along j 1 so 

in the formula  (4.4). 

Conversely,  if  

Z ml tm2tm3 C°r.mtl "2 "3 ' O)r.rn C p%'2r(M), r + m l  -k-m2 ÷ m 3  < n 

r + 2 ( m  I +m2  +m3 ) = R  

lies in ker E ,  then we have 

3 m~ 0 = Z (O)r,m) x A ((~, l)ml A (~2) m2 A (~ " )  " )j~so, 

r+2(ml+m2+m3)=R 

(5.12) 

and again us ing the expression of  (a  in the formula  (4.4) we conlude that all ((.Or.m) x must  

vanish. In fact, i f  (Wr, m)x ~ 0 for some indices r, m = (ml ,  m2, m3), then there exist 

indices kl . . . . .  k2 6 {0, 1} such that kl + . . .  + kn = ml  + m2 + m3 < n - r,  and 

(O)r,m)x A (dxXl)  k~ A . - .  A (dxxn) k" = k d x x l  A . . .  A dxx,,, with ~. ~ 0. In this case, in 

the right hand side of  the formula  (5.12) a term exists of  the form 

~.'(fOr, m) x A (dx 1 A dyl )  h~ m (dx I m dye) i' m (dx I m dye) j' m . . .  

J l.hn d 2.in A(dx n A uyn) A (dx n A Yn) A (dx n A dy2)J", 

w i t h £ '  :fi 0, hi ÷ i l + j l  : kl . . . . .  hn+i , ,+jn  = kn,hj + "  "+hn = m l , i l + - - " + i n  = m2, 
j~ ÷ "'" + jn = m3. This term cannot  cancel  with any other term in (5.12) as once the 

indices hi,  il, j l  . . . . .  h , ,  i n ,  j n  have been  fixed, there is no other term conta in ing  

(dy l ) / ' '  m (dye) i' A (dy3) j '  A . . .  m (dy2) h" m (dy2) i'' A (dy;~) .i" 

as a factor, thus leading us to a contradiction.  [] 

Remark 5.1. As 0 is aut P-invariant (see Remark 4.1), taking into account Proposition 

4.1, from the formula (5.10) and the very definition of  the forms (a (see (4.3)), we conclude 
that ~]4 is also aut P-invariant. 
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6. Proof  of  Theorems 3.2 and 3.3 

329 

6.1. Proo f  o f  Theorem 3.2 

We first state the following: 

Lemma 6.1. Let  ~ ,  = p 'w, .  + p* Wr-4 A r/4 + .- • ~- p*O)r-4k A r/] be a f o rm  o f  degree r 

in ZgauP(CP), with O)r_4s E f f2r-4s(m),  0 < s < k = [r/4].  I f  ~2,. = O, then cot 4~ = 0 

f o r  e v e ~  s such that r - 2s < n. 

Proof, Remark that if  r - 2s > n, using formula (5.10) and Lemma 5.1, we have 

q * ( P * ~ , - - 4 s  A r/ i)  = (1)s:r~COr_4, A ((~-1)2 -b (¢2)2 + (~-3)2)s = 0. 

which implies p*O)r_4s /X r/~ : 0. Hence the term Wr-4~/~ r/~ does not appear in Y2,. Now. 

assuming Y2,. = 0 and pulling it back via q, we obtain 

0 = q'Y2,. = 7r~o~r + 17r~COr_4 A ((~1)2 4_ (~2)2 ~_ (~3)2)  J r - ' ' '  

q-(I)kyr~(Or_4k A ((~1)2 + (~2)2 ._~ (~3)2)k .  

Again, by applying Lemma 5.1, we deduce 7r~Wr-4~ = 0, thus concluding the lemma. 13 

Let ~2r be an autP-invariant  r - form on C(P) .  In particular, ~ r  is gauP-invariant  and by 

virtue of Theorem 3.1, ~2,. can be written as 

~Qr = p* O)r + p*Wr--4 A ~/4 n t- ' ' "  "t- p * O)r-4!,- A rl ], o)s E ~ s  ( M ) .  

Consider a trivialization P Iu  ----- U x SU(2)  on a coordinate domain (U: x I . . . . .  x" )  and 

let X E aut rr-x (U) be the vector field given by formula (2.15) with ga = 0 and arbitrary 

f i  ~ C~c(u)"  Then, as r/4 is an aut P-invariant  form (see Remark 5.1), we have 

0 = L x c ~ r  = p * L x ' w r  + p * L x ' o , . - 4  A r14 + • .. + p*Lx,cor_4k A rl~, 

where X'  = f i  (3 /3xY)  is the p-project ion of  X onto U. Taking into account Lemma 6.1, 

this implies that YX 6 Y(U),  Lxcor-4s = 0 if r - 4s + 2s < n, and a form verifies this 

condition if and only if either it is a constant function in the case of  0-forms, or it identically 

vanishes in higher order degrees. Hence X2,. = 0 for r ¢ 4k, and ~ r  = ao4 k, a E ~ ,  for 

r = 4k, thus proving the theorem. 

6.2. Proo f  o f  Theorem 3.3 

First we remark that 774 is a closed form as follows from the formula (3.4) by a direct 

computation or else differentiating in (5.10) and taking into account that from the formula 

(4.3) we obtain 

3 
Z ff"m d /Ta=  ~ (d01m d 0 2 A  0 3 -  dO I m d 0 2 A  03) = 0. 

123 a : l  
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Moreover, as p* : H4(M;  E) ~ H4(C(P); ~) is an isomorphism, for every connection 

F on P and every closed 4-form aQ 4 on C(P) we have p*[o'~A'24] : [$~24]. In particular 

P*[cr~-041 = [04]. Then, pulling the formula (3.4) back via a t ,  according to (2.11) we 

obtain try. 04 = de t (dA(F)  + A(F) A A(F)), and pulling this equation back to the principal 

bundle P via zr we have 

7t'*(ff/~04 ) = det(drr*A(F)  + rc*A(F) A zr*A(F)) = det(X2r), 

where D r  is the curvature form of F .  We can thus finish by simply applying the definition 

of the Chern classes given in [13, XII.3]. 
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